equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.
A constante de acoplamento da interação eletromagnética é também conhecida como a constante de estrutura fina , já substituindo os valores das constantes. Na tabela a seguir são apresentadas características específicas de cada interação:[
Na teoria quântica de campos, a Representação espectral de Källén-Lehmann fornece uma expressão geral para a função correlacional de dois pontos na mecânica quântica como uma soma de propagadores livres. Ela foi descoberta de forma independente por Gunnar Källén e Harry Lehmann. A representação pode ser escrita como
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde é a função de densidade espectral que deve ser definida positivamente, numa teoria de gauge, esta condição não pode ser garantida, mas uma representação espectral pode ser fornecida.[1] Esta é uma técnica não perturbativa da teoria quântica de campos.
Definição
Para se obter uma representação espectral para o propagador de um campo , é necessário considerar um conjunto de estados de forma que, a função correlacional pode ser escrita como
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Agora utilizando o grupo de Poincaré do vácuo, obtêm-se
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Introduzindo-se a função de densidade espectral
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Pode-se utilizar o facto que a função correlacional, sendo uma função de , apenas pode depender de . Além disto, todos os estados intermediários possuem e . Logo percebe-se que a função de densidade espectral será real e positiva. Então pode-se escrever que
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
e pode-se trocar a integral livremente, obtendo-se a expressão
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde
- .
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Do teorema CPT sabe-se que uma expressão idêntica pode ser obtida para e então conclui-se da expressão para o produto de campos cronologicamente ordenados
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
é um propagador de partícula. Obtém-se a decomposição espectral.
Comentários
Postar um comentário