equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////


  A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.


A constante de acoplamento da interação eletromagnética é também conhecida como a constante de estrutura fina , já substituindo os valores das constantes. Na tabela a seguir são apresentadas  características específicas de cada interação:[






Na teoria quântica de campos, a Representação espectral de Källén-Lehmann fornece uma expressão geral para a função correlacional de dois pontos na mecânica quântica como uma soma de propagadores livres. Ela foi descoberta de forma independente por Gunnar Källén e Harry Lehmann. A representação pode ser escrita como

equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

onde  é a função de densidade espectral que deve ser definida positivamente, numa teoria de gauge, esta condição não pode ser garantida, mas uma representação espectral pode ser fornecida.[1] Esta é uma técnica não perturbativa da teoria quântica de campos.

Definição

Para se obter uma representação espectral para o propagador de um campo , é necessário considerar um conjunto de estados  de forma que, a função correlacional pode ser escrita como

equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Agora utilizando o grupo de Poincaré do vácuo, obtêm-se

equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Introduzindo-se a função de densidade espectral

equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Pode-se utilizar o facto que a função correlacional, sendo uma função de , apenas pode depender de . Além disto, todos os estados intermediários possuem  e . Logo percebe-se que a função de densidade espectral será real e positiva. Então pode-se escrever que

equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

e pode-se trocar a integral livremente, obtendo-se a expressão

equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

onde

equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

.

Do teorema CPT sabe-se que uma expressão idêntica pode ser obtida para  e então conclui-se da expressão para o produto de campos cronologicamente ordenados

equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

onde

equação Graceli estatística  tensorial quântica de campos 


1 /   / 


  G     


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

é um propagador de partícula. Obtém-se a decomposição espectral.

Comentários